Physikalisches Kolloquium: Single spin magnetic resonance by microwave fluorescence detection

Jan 18
18. January 2023 12:00 - 13:00
Hörsaal H, Staudtstr. 5, 91058 Erlangen und per Zoom

Single spin magnetic resonance by microwave fluorescence detection
Z. Wang1, L. Balembois1, E. Billaud1, M. Rancic1, M. Le Dantec1, T. Chaneliere2, P. Goldner3, S. Bertaina4, D. Vion1, D. Esteve1, P. Bertet1, E. Flurin1
1 Université Paris-Saclay, CEA, CNRS, SPEC, 91191 Gif-sur-Yvette CEDEX, France
2Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
3Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
4CNRS, Aix-Marseille Université, IM2NP (UMR 7334), Institut Matériaux Microélectronique et Nanosciences de Provence, Marseille, France

Electron spin resonance (ESR) spectroscopy is the method of choice for characterizing paramagnetic impurities, with applications ranging from chemistry to quantum computing, but it gives access only to ensemble-averaged quantities due to its limited signal-to-noise ratio. The sensitivity needed to detect single electron spins has been reached so far using spin-dependent photoluminescence, transport measurements, or scanning-probe techniques. These methods are system-specific or sensitive only in a small detection volume, so that practical single spin detection remains an open challenge.
Here, we demonstrate single electron spin resonance by spin fluorescence detection [1], using a microwave photon counter at cryogenic temperatures based on a superconducting transmon qubit [2]. We detect individual paramagnetic erbium ions in a scheelite crystal coupled to a small-mode-volume, high-quality factor superconducting resonator to enhance their radiative decay rate [3], with a signal-to-noise ratio of 1.5 in one second integration time. The fluorescence signal shows anti-bunching, proving that it comes from individual emitters [4]. Coherence times up to 3ms are measured, limited by the ion radiative lifetime. The method applies to arbitrary paramagnetic species with long enough non-radiative relaxation time, and offers large detection volumes ([X]); as such, it may find applications in magnetic resonance and quantum computing.

[1] E. Albertinale et al., Nature 600, 434 (2021)
[2] R. Lescanne et al., Phys. Rev. X 10, 021038 (2020)
[3] A. Bienfait et al., Nature 531, 74 (2016)
[4] Z. Wang et al., in preparation (2022)

Sprecher: Prof. Dr. Patrice Bertet, Université de Paris-Saclay
Kontakt: Prof. Dr. Christopher Eichler

Norbert Lindlein lädt Sie zu einem geplanten Zoom-Meeting ein.

Thema: Physikalisches Kolloquium WS 2022/2023

Laden Sie die folgenden iCalendar-Dateien (.ics) herunter und importieren Sie sie in Ihr Kalendersystem.

Zoom-Meeting beitreten

Meeting-ID: 660 2268 3571
Kenncode: 729617
Schnelleinwahl mobil
+496971049922,,66022683571#,,,,*729617# Deutschland
+496938079883,,66022683571#,,,,*729617# Deutschland

Einwahl nach aktuellem Standort
+49 69 7104 9922 Deutschland
+49 69 3807 9883 Deutschland
+49 69 3807 9884 Deutschland
+49 69 5050 0951 Deutschland
+49 69 5050 0952 Deutschland
+49 695 050 2596 Deutschland
Meeting-ID: 660 2268 3571
Kenncode: 729617
Ortseinwahl suchen:

Über SIP beitreten

Über H.323 beitreten (Amsterdam
Niederlande) (Deutschland)
Kenncode: 729617
Meeting-ID: 660 2268 3571